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About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.
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About KALOS

KALOS is a flagship service of HAECHI LABS, providing blockchainwallets and security
audits since 2018.

We bring together the best experts to make the Web3 space safer for everyone.
Our team consists of security researchers with various expertise — smart contract,
blockchain, cryptography, web security, reverse engineering, and binary analysis.
Their skills have lead tomultiple strong performances in reputable cybersecurity com-
petitions over the past few years.

Over the course of the last five years, we have secured nearly $60B crypto assets
over 400 projects of various types such as mainnets, DeFi protocols, NFT services,
P2E games, and bridges. Our expertise was recognized by the Samsung Electronics
Startup Incubation Program, and we have also received technology grants from the
Ethereum Foundation and the Ethereum Community Fund.

Our audit process is customer focused — our security researchers communicate with
the team on a regular basis, sharing key vulnerabilities as soon as they are discovered.
With our expertise and our personalized approach for each client, we believe that our
security audits will be a great addition for your project.

Our website with our profiles and recent research is at kalos.xyz. If you are interested
in getting an audit with us, please send us an email at audit@kalos.xyz.
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1 Executive Summary

Zellic and KALOS conducted a security assessment for Axiom from October 30th to
November 10th, 2023. During this engagement, we reviewed Axiom’s code for secu-
rity vulnerabilities, design issues, and general weaknesses in security posture.

Following the completion of this audit, Axiom requested our assessment of three
pull requests:

• PR 213 Remove header_max_field_bytes fromCoreParamsHeaderSubquery
• PR 218 Remove hard-coded block header constants
• PR 219 Update for Cancun

No security issues were identified in association with these particular updates.

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to an-
swer. These questions are agreed upon through close communication between Zellic,
KALOS, and the client. In this assessment, we sought to answer the following ques-
tions:

• Do the circuits follow the appropriate specification?
• Are the circuits constrained properly?
• Are the witness assignments done correctly?

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.
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1.3 Results

During our assessment on the scoped Axiom circuits, we discovered two findings. No
critical issues were found. One findingwas of high impact and onewas of low impact.

Additionally, we recorded our notes and observations from the assessment for Ax-
iom’s benefit in the Discussion section (4).

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 1

Medium 0

Low 1

Informational 0

High

Low
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2 Introduction

2.1 About Axiom

Axiom scales data-rich applications on Ethereum by providing smart contracts trust-
less access to historic on-chain data and verified compute over it.

2.2 Methodology

During a security assessment, Zellic and KALOSwork through various testingmethods
along with a manual review. In some cases for a ZKP circuit, we also provide some
proofs for soundness. The majority of the time is spent on a manual review of the
entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, we focus pri-
marily on the following classes of security and reliability issues:

Underconstrained circuits. The most common type of vulnerability in a ZKP circuit
is not adding sufficient constraints to the system. This leads to proofs generated
with incorrect witnesses in terms of the specification of the project being accepted
by the ZKP verifier. We manually check that the set of constraints satisfies sound-
ness, enough to remove all such possibilities, and in some cases, provide a proof of
the fact.

Overconstrained circuits.While rare, it is possible that a circuit is overconstrained. In
this case, appropriately assigning witness will become impossible, leading to a vul-
nerability. To prevent this, wemanually check that the constraint system is set upwith
completeness so that the proofs generated with the correct set of witnesses indeed
pass the ZKP verification.

Missing range checks. This is a popular type of an underconstrained circuit vulnera-
bility. Due to the usage of field arithmetic, overflow checks and range checks serve a
huge purpose to build applications that work over the integers. We manually check
the code for such missing checks, and in certain cases, provide a proof that the given
set of range checks are sufficient to constrain the circuit up to specification.

Cryptography. ZKP technology and their applications are based on various aspects of
cryptography. Wemanually review the cryptography usage of the project and exam-
ine the relevant studies and standards for any inconsistencies or vulnerabilities.

Code maturity. We look for potential improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-

Zellic 7 Axiom



dards.

For each finding, Zellic and KALOS assign it an impact rating based on its severity and
likelihood. There is no hard-and-fast formula for calculating a finding’s impact. In-
stead, we assign it on a case-by-case basis based on our judgment and experience.
Both the severity and likelihood of an issue affect its impact. For instance, a highly
severe issue’s impact may be attenuated by a low likelihood. We assign the following
impact ratings (ordered by importance): Critical, High, Medium, Low, and Informa-
tional.

We organize its reports such that the most important findings come first in the doc-
ument, rather than being strictly ordered on impact alone. Thus, we may sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on various soft factors, like our clients’ threat models,
their business needs, and so on. We aim to provide useful and actionable advice to
our partners considering their long-term goals, rather than a simple list of security
issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Axiom Circuits

Repository https://github.com/axiom-crypto/axiom-eth-working

Version axiom-eth-working: 7c0bf7b10e401f8a1a7df44ff9272f58b257ffac

Program • axiom-query/src/components/subqueries/*

Types Rust, Solidity

Platforms Halo2, EVM

2.4 Project Overview

Zellic and KALOS were contracted to perform a security assessment with three con-
sultants for a total of five person-weeks. The assessment was conducted over the
course of three calendar weeks.
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Contact Information

The following project manager was associated with the engagement:

Chad McDonald, Engagement Manager
chad@zellic.io

The following consultants were engaged to conduct the assessment:

Malte Leip, Engineer
malte@zellic.io

Gyumin Roh, Engineer
rkm0959@kalos.xyz

Mohit Sharma, Engineer
mohit@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

October 30, 2023 Start of primary review period

November 10, 2023 End of primary review period
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3 Detailed Findings

3.1 The decompose_rlp_array_phase1 is missing in receipt-query
circuits

• Target: receipt/circuit.rs
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

The receipt circuit dealswith the receipts and the parsing of receipts into various fields
and logs as well as the parsing of logs into topics and data. One of the main functions
inside the receipt-query circuit is the parse_log function, which parses a log by de-
composing the RLP encoded byte array into a list of addresses, topics, and data. The
topics byte array is then once again RLP decoded into a list of topics. These two RLP
decompositions are done via the RlpChip’s decompose_rlp_array_phase0.

However, unlike every other usage of decompose_rlp_array_phase0, there is no corre-
sponding decompose_rlp_array_phase1 being done on the RlpArrayWitness<F> at the
relevant phase. This leads to a soundness issue.

Impact

The RLP decomposition of the logs into addresses, topics, and data and the RLP de-
composition of topics into a variable length list of topics is underconstrained.

Recommendations

We recommend adding the decompose_rlp_array_phase1 calls appropriately to avoid
soundness vulnerabilities.

Remediation

This issue has been acknowledged by Axiom, and fixes were implemented in the fol-
lowing commits:

• 4f73b7bb

• 5985b263
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3.2 Contract data being short leads to completeness bug in the
transaction query circuit

• Target: transaction/circuit.rs
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Medium
• Impact: Low

Description

The transaction-query circuit aims to answer various queries about a transaction in
the EVM. One of the possible queries is about the data of a transaction; it can be asked
in two ways. The first is as contract data, and the second is as calldata. In the case of
contract data, the entire data is considered, but in the case of calldata, the first four
bytes are omitted as they are considered to be the function selector. If a calldata has
less than four bytes, then it is considered to be an invalid calldata.

To implement this, first the buffer is prepared as the data byteswith the first four bytes
omitted if it is a calldata query and the raw data bytes if it is a contract-data query.
This is done with a select gate as follows.

let buffer = (0.)data_bytes.len())
.map(|i| {

if i + 4 < data_bytes.len() {
gate.select(ctx, data_bytes[i + 4], data_bytes[i],

in_calldata_range) /) if calldata, take i + 4, else take i
} else {

gate.mul_not(ctx, in_calldata_range, data_bytes[i]) /) if
calldata, take \x00, else take i

}
})
.collect_vec();

Then, the actual buffer length is computed as follows.

• is_valid_calldata = (data_len >) 4)

• buffer_len = is_valid_calldata * (data_len - 4 * is_calldata_query)

let is_valid_calldata =
is_gte_usize(ctx, range, data_len, 4, bit_length(data_bytes.len()
as u64));
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let mut buffer_len = gate.sub_mul(ctx, data_len, Constant(F:)from(4)),
in_calldata_range);

buffer_len = gate.mul(ctx, buffer_len, is_valid_calldata);
let is_in_range =

gate.mul_add(ctx, in_calldata_range, is_valid_calldata,
in_contract_data_range);

shift = gate.mul(ctx, shift, is_in_range);
let (buffer, is_lt_len)

= extract_array_chunk_and_constrain_trailing_zeros(
ctx,
range,
&buffer,
buffer_len,
shift,
32,
FIELD_IDX_BITS,

);

This poses a problem. In the case where contract data is being queried and the data
length itself is less than four, then is_valid_calldata will be false and buffer_len
would be set to zero. However, the buffer does have nonzero bytes and the intended
behavior would be to indeed return the contract-data bytes as normal.

However, as the buffer is considered to have zero length, the circuit will not behave
as intended, leading to a completeness issue.

Impact

The contract data, in the case where its length is less than four, cannot be proved by
the transaction query. This is a completeness issue. However, as it deals with a small
portion of actual smart contracts, we marked this as a low-impact bug.

Recommendations

We recommend computing buffer_len appropriately to handle all cases. It should
especially return data_len when it is a contract-data query regardless of whether or
not it is less than four or not.

Remediation

This issue has been acknowledged by Axiom, and fixes were implemented in the fol-
lowing commits:
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• 17e60b5e

• ab73ae2c
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4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 RLP length bytes constraints

During exploration beyond the designated audit scope, we identified an issue in the
RLP circuit. We have included these vulnerabilities for the sake of completeness.

The RLP decomposition circuit had two critical vulnerabilities in the encoding for
strings and arrays, caused by underconstraints in length parsing. Both bugs basically
had the same impact, allowing for multiple valid representations of the same string,
which can in turn potentially be used to spoof exclusion proofs.

Below is an explanation and PoC of the two bugs:

1. In the RLP circuit, for long lists and strings (i.e len_len is non zero) the length is
not constrained to be greater than 55. Therefore short strings with length less
than 55 can be encoded using both the long and short convention, leading to
multiple valid representations of the same list

Proof of concept:

pub fn attack() {
let k = DEGREE;
/) the list [ ”cat”, ”dog” ] = [ 0xc8, 0x83, 'c', 'a', 't', 0x83, 'd',
'o', 'g' ]
let cat_dog: Vec<u8> = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd',
b'o', b'g'];
let attack: Vec<u8> = vec![0xf8, 0x08, 0x83, b'c', b'a', b't', 0x83,
b'd', b'o', b'g'];
for mut test_input in [cat_dog, attack] {

test_input.append(&mut vec![0; 69 - test_input.len()]);
let circuit = rlp_list_circuit:)<Fr>(

CircuitBuilderStage:)Mock,
test_input,
&[15, 9, 11, 10, 17],
true,
None,
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None,
);
MockProver:)run(k, &circuit, vec![]).unwrap().assert_satisfied();

}
}

2. When length is parsed for long strings, it was done by reading the number of
bytes specified in len_len and then evaluating them to an integer value. There
was amissing check for leading null bytes which allows an attack to add a num-
ber of 0x00 padding bytes to the length, again leading to multiple valid repre-
sentations of the same list

Proof of concept:

pub fn attack() {
let k = DEGREE;
/) the list [ ”cat”, ”dog” ] = [ 0xc8, 0x83, 'c', 'a', 't', 0x83, 'd',
'o', 'g' ]
let cat_dog: Vec<u8> = vec![0xc8, 0x83, b'c', b'a', b't', 0x83, b'd',
b'o', b'g'];
let attack: Vec<u8> = vec![0xf9, 0x00, 0x08, 0x83, b'c', b'a', b't',
0x83, b'd', b'o', b'g'];
for mut test_input in [cat_dog, attack] {

test_input.append(&mut vec![0; 300 - test_input.len()]);
let circuit = rlp_list_circuit:)<Fr>(

CircuitBuilderStage:)Mock,
test_input,
&[15, 9, 11, 10, 17],
true,
None,
None,

);
MockProver:)run(k, &circuit, vec![]).unwrap().assert_satisfied();

}
}

This issue has been acknowledged by Axiom, and a fix was implemented in commit
37409288.
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4.2 Analysis of the account-subquery circuit

We summarize the constraints in the account-subquery circuit.

The circuit has its output commitment aswell as a promise commitment for calls to the
header subquery as the public instances. The output commitment commits to a virtual
table of key-value pairs ((block_number, addr, field_idx), value). Here, block_nu
mber, addr, and field_idx are field elements representing a block number, account
address, and index in the Ethereum blockchain account-state tuple (which has four
components, nonce, balance, storageRoot, and codeHash, in that order), respectively.
Furthermore, value consists of two field elements that jointly encode 32 bytes of data
(as a HiLo).

For each key, the circuit constrains addr to be a 160-bit value and 0 ≤ field_idx < 4.
For each value, the circuit introduces a witness state_root, a 256-bit value witnessed
in two field elements as a HiLo. The witness value is constrained to be the HiLo rep-
resentation of the 32 bytes obtained by padding with zero on the left of the field_id
x-th component of the account-state tuple for the account with address addr at block
number block_number, under the assumption that state_root is the Keccak hash of the
root node of the state trie in block number block_number. If the address does not exist
in the state trie, the value is constrained to a default value depending on field_idx.
Verification of state_root is handled via a promise call to the header-subquery circuit.

Looking into src/components/subqueries/account/circuit.rs, we can summarize the
constraints introduced by each function as follows.

handle_single_account_subquery_phase0

• Loads a witness addr for the address[1] and checks that it decomposes into 20
bytes, with addresswitnessing the decomposition.

• Assigns witnesses for an MPTProof<F> called mpt_proof.

• Uses EthStorageChip:)parse_account_proof_phase0 in combination with a later
call to EthStorageChip:)parse_account_proof_phase1 in the second phase to
verify that the MPT inclusion/exclusion proof mpt_proof is correct. Concretely,
with the root of trust being the MPT root hash (the assumption is that it is the
valid stateRoot for the block under consideration), this should ensure

– that keccak256(address) is not included in the MPT trie iff account_witness
.mpt_witness().slot_is_empty is true.

1 Interpreted as a big endian number.
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– that if keccak256(address) is included in the MPT trie, then the value is RLP
decomposed into an RlpArrayWitness<F>with four components of lengths
[8, 12, 32, 32], with the result stored in account_witness.array_witness
().

• Constrains state_root to be the HiLo representation of the MPT root hash of
mpt_proof. Thus, state_root can be considered the root of trust for account_wit
ness.mpt_witness().slot_is_empty and account_witness.array_witness() now.

• Assigns a witness for field_idx and constrains it to satisfy 0 ≤ field_idx < 4.

• Pads the components of account_witness.array_witness() on the left with zero
bytes to normalize them to a length of 32 bytes and converts them to HiLo, stor-
ing the result in account_fixed.

• Replaces account_fixed by the default values to be used for nonexisting ac-
counts if account_witness.mpt_witness().slot_is_empty is true.

• Extracts the field_idx-th component from account_witness and assigns it to
value.

• Loads a witness for block_number.

Overall, this function returns

PayloadAccountSubquery {
account_witness,
state_root,
output: AssignedAccountSubqueryResult {

subquery: AssignedAccountSubquery { block_number, addr, field_idx
},

value,
},

}

with the components constrained so that under the assumptions that

• the second phase constraints for account_witness hold, and

• the witness state_root is the correct stateRoot for the block with number bloc
k_number,

it holds that

• the witness addr is a 160-bit value,
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• 0 ≤ field_idx < 4, and

• the HiLo value contains the field_idx-th component of the account state of
address addr at the block with number block_number if that account exists and
a default value otherwise. The conversion to HiLo is as mentioned earlier.

virtual_assign_phase0

• Calls handle_single_account_subquery_phase0 for each subquery (of its input
shard).

• Computes the output commit for the virtual table of key-value pairs ((block_n
umber, addr, field_idx), value), where these four components are those re-
turned from handle_single_account_subquery_phase0.

• Makes a promise call, for each subquery, to the header-subquery component
to obtain the stateRoot at the block with block number block_number, and con-
strains the result to be equal to the state_root witness contained in the return
value from handle_single_account_subquery_phase0.

handle_single_account_subquery_phase1

• Calls EthStorageChip:)parse_account_proof_phase1 on the payloads’s account_
witness, thus verifying the remaining second-phase constraints.

virtual_assign_phase1

• Calls handle_single_account_subquery_phase1 for each payload.

4.3 Analysis of the storage-subquery circuit

We summarize the constraints in the storage-subquery circuit.

The circuit has its output commitment as well as a promise commitment for calls to
the account subquery as the public instances. The output commitment commits to a
virtual table of key-value pairs ((block_number, addr, slot), value). Here, block_n
umber and addr are field elements representing a block number and account address,
and slot consists of two field elements that jointly encode the 32-byte key of a storage
slot as a HiLo. Furthermore, value consists of two field elements that jointly encode
32 bytes of data as a HiLo.

For each key, the circuit constrains slot to be the HiLo representation of 32 bytes. For
each value, the circuit introduces a witness storage_root, a 256-bit value witnessed
in two field elements as a HiLo. The witness value is constrained to be the HiLo repre-
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sentation of the 32 bytes stored at storage slot slot of the account with address addr
at the blockwith number block_number, under the assumption that storage_root is the
Keccak hash of the root node of the storage trie of the account with address addr at
block with number block_number. This assumption is verified via a promise call to the
account-header subquery.

Looking into src/components/subqueries/storage/circuit.rs, we can summarize the
constraints introduced by each function as follows.

handle_single_storage_subquery_phase0

• Loads a witness addr for the address.

• Loads 32 witnesses for the bytes of the slot as slot_bytes and constrains two
field elements slot to be the HiLo representation of slot_bytes.

• Assigns witnesses for an MPTProof<F> called mpt_proof.

• Uses EthStorageChip:)parse_storage_proof_phase0 in combination with a later
call to EthStorageChip:)parse_storage_proof_phase1 in the second phase to
verify that the MPT inclusion/exclusion proof mpt_proof is correct. Concretely,
with the root of trust being the MPT root hash (the assumption is that it is the
valid storageRoot for the block under consideration), this should ensure

– that slot_bytes indeed consists of bytes.

– that keccak256(slot_bytes) is not included in the MPT trie iff storage_witn
ess.mpt_witness().slot_is_empty is true.

– that if keccak256(slot_bytes) is included in the MPT trie, then the value
is RLP decoded into an RlpFieldWitness<F> of at most 32 bytes, with the
result stored in storage_witness.value_witness().

• Constrains storage_root to be theHiLo representation of theMPT root hash of mp
t_proof. Thus, storage_root can be considered the root of trust for storage_witn
ess.mpt_witness().slot_is_empty and storage_witness.value_witness() now.

• Constrains value to be the HiLo representation of storage_witness.value_witne
ss() after padding on the left with zero bytes to a length of 32 bytes.

• Replaces value by the default value zero if storage_witness.mpt_witness().slo
t_is_empty is true.

• Loads a witness for block_number.

Overall, this function returns
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PayloadStorageSubquery {
storage_witness,
storage_root,
output: AssignedStorageSubqueryResult {

subquery: AssignedStorageSubquery { block_number, addr, slot },
value,

},
}

with the components constrained so that under the assumptions that

• the second phase constraints for storage_witness hold, and

• thewitness storage_root is the correct storageRoot for the accountwith address
addr at the block with number block_number,

it holds that

• the two field elements slot are the HiLo representation of 32 bytes, and

• the HiLo value contains the value stored at storage key slot of the storage asso-
ciated to the account with address addr at the block with number block_number.

virtual_assign_phase0

• Calls handle_single_storage_subquery_phase0 for each subquery (of its input
shard).

• Computes the output commit for the virtual table of key-value pairs ((block_n
umber, addr, slot), value), where these four components are those returned
from handle_single_storage_subquery_phase0.

• Makes a promise call, for each subquery, to the account-subquery component
to obtain the storageRoot of the account with address addr at the block with
block number block_number, and it constrains the result to be equal to the stor
age_root witness contained in the return value from handle_single_storage_su
bquery_phase0. The promise call will also check that addr is well-formed.

handle_single_storage_subquery_phase1

• Calls EthStorageChip:)parse_storage_proof_phase1 on the payloads’s storage_
witness, thus verifying the remaining second-phase constraints.
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virtual_assign_phase1

• Calls handle_single_storage_subquery_phase1 for each payload.

4.4 Analysis of the Solidity-mapping subquery circuit

We summarize the constraints in the Solidity-mapping subquery circuit.

The circuit has its output commitment as well as a promise commitment for calls to
the storage subquery as the public instances. The output commitment commits to
a virtual table of key-value pairs ((block_number, addr, mapping_slot, mapping_dep
th, keys), value). Here, block_number and addr are field elements representing a
block number and account address, and mapping_slot is a HiLo instance encoding 32
bytes of the slot for the mapping. The mapping_depth (field elements) and keys (HiLo
instances) represent the keys applied to the mapping. Furthermore, value consists of
two field elements that jointly encode 32 bytes of data as a HiLo.

The circuit aims to compute the corresponding slot for the mapping’s value based on
mapping_slot, mapping_depth, keys and denotes this as value_slot. Then, a promise
call to the storage subquery based on (block_number, addr, value_slot) is used to
fetch the actual value on the value_slot slot as a HiLo instance. This is the value that
is committed. A maximum of four Solidity-mapping keys are supported.

Looking into src/components/subqueries/solidity_mappings/circuit.rs, we can sum-
marize the constraints introduced by each function as follows.

handle_single_solidity_nested_mapping_subquery_phase0

• Loads all 32 bytes of the mapping_slot and range checks them to be bytes. Each
of the HiLos are checked to be 16 bytes by using uint_to_bytes_be on each of
them.

• Loads all 32 bytes of all the keys and range checks them to be bytes. Similar to
the mapping_slot, each of the HiLos are checked to be 16 bytes.

• Loads mapping_depth, block_number, addr as a witness.

• Computes the mapping_witness via the slot_for_nested_mapping_phase0 func-
tion call.

• Converts the computed slot to a HiLo form to get value_slot.

Overall, this function returns
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PayloadSolidityNestedMappingSubquery { mapping_witness, subquery,
value_slot }

with the components constrained so that under the assumption that the second-
phase constraints for mapping_witness hold, it holds that the witness value_slot is
the HiLo form of the correctly computed slot.

virtual_assign_phase0

• Calls handle_single_solidity_nested_mapping_subquery_phase0 for each sub-
query (of its input shard).

• Computes the output commit for the virtual table of key-value pairs ((block_nu
mber, addr, mapping_slot, mapping_depth, keys), value), where these com-
ponents are those returned from handle_single_solidity_nested_mapping_subq
uery_phase0.

• Makes a promise call, for each subquery, to the storage-subquery component
to obtain the storage value for the account with address addr at the block with
block number block_number at the slot value_slot and fetches the result. The
promise call will also check that addr is well-formed.

handle_single_solidity_nested_mapping_subquery_phase1

• Calls SolidityChip:)slot_for_nested_mapping_phase1 on the payload’s mappin
g_witness, thus verifying the remaining second-phase constraints.

virtual_assign_phase1

• Calls handle_single_solidity_nested_mapping_subquery_phase1 for each pay-
load.

4.5 Analysis of the block-header–subquery circuit

We summarize the constraints in the block-header circuit.

The circuit has an output commitment that commits to a virtual table of key-value
pairs ((block_number, field_idx), value). Here, block_number is the block number
and field_idx is a field index that is being queried. Furthermore, value consists of two
field elements that jointly encode 32 bytes of data as a HiLo.

Looking into src/components/subqueries/block_header/circuit.rs, we can summarize
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the constraints introduced by each function as follows.

handle_single_header_subquery_phase0

• Parses the RLP array for the block header (this automatically constrains the block
number and block hash).

• Loads the MMR proof and verifies it with logic in mmr_verify.rs.

• Range checks the field_idx to satisfy field_idx < 232.

• Defines is_idx_in_header = (field_idx < 50).

• Computes header_idx = field_idx * is_idx_in_header, so that it is field_idx
if it is intended as a header index and zero otherwise.

• Pads the field witnesses accordingly based on whether a field is variable length
or a field is of value type. If a field is variable length and value type, it suffices to
left pad it into a fixed-length byte array.

• Truncates it into 32 bytes if the fixed byte array is longer than 32 bytes.

• Takes len to be the minimum of 32 and field_len, in the case of extra data, then
computes a mask of 32 entries that are zero at indices >) len and one at indices
< len by unsafe_lt_mask. Bymultiplying this value to the bytes, it forces all bytes
at indices >) len to be zero.

• Packs the 32 bytes into a HiLo instance.

• Selects the header’s field with index header_idx using indicators and stores the
result in value.

Special cases are handled separately if the query requests hash, block size, or extra
data len. They are assigned indices 50, 51, and 52 respectively and value selects be-
tween the three values with select_hi_lo. Booleans return_hash, return_size, and
return_extra_data_len are constrained to be true precisely in the respective special
case.

The logs-bloom–query case is handled with handle_logs_bloom, which will be ex-
plained in the discussion of the receipt circuit in section 4.7.

The boolean return_logs_bloom is constrained by handle_logs_bloom to be true iff 70 ≤
field_idx < 78.

Query is valid if either the indexwas one of the special-case indices OR the indexwas
in the header field range and lies within the number of fields in the header RLP. This is
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checked by computing the following values:

• is_valid_header_idx = (header_idx < header_witness.list_len).

– is_special_case = return_hash + return_size + return_extra_data_len
+ return_logs_bloom.

– As the values 50, 51, and 52 as well as the range 70,...)),77 are mutually
exclusive, it is assured that is_special_case is either 0 or 1.

– is_valid = is_idx_in_header ? is_valid_header_idx : is_special_cas
e.

– Constrains that is_valid =) 1.

Overall, this function returns the following:

PayloadHeaderSubquery {
header_witness,
output: AssignedHeaderSubqueryResult {

subquery: AssignedHeaderSubquery { block_number, field_idx },
value,

},
}

virtual_assign_phase0

• Calls handle_single_header_subquery_phase0 for each subquery (of its input
shard).

• Computes the output commit for the virtual table of key-value pairs ((block_n
umber, field_idx), value), where these components are those returned from
handle_single_header_subquery_phase0.

handle_single_header_subquery_phase1

• Calls EthBlockHeaderChip:)decompose_block_header_phase1 on the payload’s he
ader_witness, thus verifying the remaining second-phase constraints.

virtual_assign_phase1

• Calls handle_single_header_subquery_phase1 for each payload.

We now explain the details of the MMR-related circuit logic.
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assign_mmr

• Loads all MMR peaks as 32 bytes with range check.

• Computes whether or not the peaks are all zero bytes and collects them as mm
r_bits.

• Computes mmr_num_blockswith mmr_bits as a little-endian–bit representation.

keccak

• Computes the number of leading zeros in mmr_bits.

• Computes the number of actual peaks by num_peaks = max_num_peaks - num_le
ading_zeros.

• Hashes it using keccak_chip’s keccak_var_len on the concatenated MMR-peak
bytes since the number of bytes to actually hash is 32 * num_peaks.

mmr_verify

• Constrains that list_id < mmr_num_blocks.

• Computes the number of leading agreeing bits between mmr_num_blocks and li
st_id.

• Computes the peak_id as mmr.len() - 1 - num_leading_agree.

• Computes the intermediate hashes from the Merkle proof verification.

• Takes the peak_id-th intermediate hash and MMR peak using indicators.

• Checks that, if proof verification is being done, the intermediate hash and the
MMR peak is equal.

4.6 Analysis of the transaction-subquery circuit

We summarize the constraints in the transaction circuit.

The circuit has its output commitment aswell as a promise commitment for calls to the
block-header subquery as the public instances. The output commitment commits to a
virtual table of key-value pairs ((block_number, tx_idx, field_or_calldata_idx), v
alue). Here, block_number and tx_idx are field elements representing a block number
and the transaction index, and field_or_calldata_idx is a field element that details
the query about the transaction. Furthermore, value consists of two field elements
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that jointly encode 32 bytes of data as a HiLo.

handle_single_tx_subquery_phase0

Transaction-proof handling

• Loads the transaction proof and the transaction root, then runs the transaction
proof with parse_transaction_proof_phase0.

• Constrains transaction type to be less than three, which implicitly filters out the
case where the MPT proof was an exclusion proof.

Data extraction with extract_field

• Assigns and constrains data_list_index based on the transaction type using in-
dicators.

• Calls extract_field to extract the data field.

Index handling on field_or_calldata_idx

• Witnesses field_or_calldata_idx and range checks it to be less than 232.

• Computes is_idx_in_list = (field_or_calldata_idx < 51).

• Computes field_idx = is_idx_in_list ? field_or_calldata_idx : 1, so that
if the query index is within range, field_idx is the original field_or_calldata_i
dx and 1 if otherwise.

• Calls v2_map_field_idx_by_tx_type to convert field index to RLP list index (this
depends on the transaction type).

Field extraction with extract_truncated_field

• Computes an indicator based on the list index.

• Selects the field_len and the truncated SUBQUERY_OUTPUT_BYTESbytes of the cor-
responding field element with select_by_indicator.

• Sets len to be the minimum of actual field_len and SUBQUERY_OUTPUT_BYTES and
constrains that all bytes with index >) len are trailing zeros.
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• Left pads the value to fixed length, unless field_idx =) TX_DATA_FIELD_IDX, then
packs it into a HiLo instance.

Special case handling: Easier cases (tx_type, block_num, tx_index, data_length)

• Computes whether the query is for the tx_type, block_num, tx_index, or data_
length by checking whether field_or_calldata_idx equals 0x33, 0x34, 0x35, or
0x38, respectively.

• Sets value to the appropriate HiLo answer via select_hi_lo.

Special case handling: function_selector

• This computeswhether the query is for function_selector by checkingwhether
field_or_calldata_idx equals 0x36.

• The goal is to return

– TX_CONTRACT_DEPLOY_SELECTOR_VALUE in the case where it is a contract de-
ployment, so data_len !) 0 and to_len =) 0;

– TX_NO_CALLDATA_SELECTOR_VALUEwhen data_len =) 0;

– the four-byte selector into a single field element when data_len >) 4 and
to_len !) 0; and

– to constrain so that the data_len < 4 and to_len !) 0 case never happens
when function_selector is the query.

• To do so, the following computation and constraints are applied.

– Computes empty_data = (data_len =) 0).

– Computes is_contract_deploy = (1 - empty_data) * (to_len =) 0).

– Computes no_sel = empty_data + is_contract_deploy, which is equiva-
lent to an OR of two booleans as the two cases are disjoint.

– Computes ret1 = is_contract_deploy ? TX_CONTRACT_DEPLOY_SELECTOR_V
ALUE : TX_NO_CALLDATA_SELECT_VALUE.

– Computes ret2 = bytes_be_to_uint(data[.)4]).

– Computes is_valid = (no_sel |) (data_len >) 4)).
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– Constrains that if the function selector is the query, is_valid is true. This
forces that in the case where data_len !) 0 and to_len !) 0, data_len
must be at least four to answer the function-selector query.

– Returns no_sel ? ret1 : ret2, which in conclusion returns TX_CONTRACT_D
EPLOY_SELECTOR_VALUE when is_contract_deploy, TX_NO_CALLDATA_SELECT_
VALUE when data_len =) 0, and the four-byte selector when data_len !)
0 and to_len !) 0 (with data_len >) 4 due to additional constraint on is_
valid).

Special case handling: data via handle_data

• This computes in_calldata_range = field_or_calldata_idx in [TX_CALLDATA_
IDX_OFFSET = 100,...)), TX_CONTRACT_DATA_IDX_OFFSET = 100000].

• This computes in_contract_data_range = (field_or_calldata_idx >) TX_CONT
RACT_DATA_IDX_OFFSET).

• To compute the correct shift, both the calldata and the contract-data cases are
considered separately and the shift selected accordingly.

– calldata_shift = field_or_calldata_idx - TX_CALLDATA_IDX_OFFSET

– contract_data_shift = field_or_calldata_idx - TX_CONTRACT_DATA_IDX_
OFFSET

– shift = in_calldata_range ? calldata_shift : contract_data_shift

• In the case of calldata query, the first four bytes need to be ignored. This is
handled by selecting the i-th byte of the buffer to be either data_bytes[i + 4
] or data_bytes[i] depending on in_calldata_range being true or not. In the
case where i + 4 > data_bytes.length(), the buffer is filled with (1 - in_call
data_range) * data_bytes[i] so that zero bytes are added when it is a calldata
query.

• The true buffer length is computed as buffer_len = data_len - 4 * in_callda
ta_range.

• This computes is_valid_calldata = (data_len >) 4).

• In the casewhere a calldata query is asked but is_valid_calldata is false, the bu
ffer_len is set to zero. Therewas a issue here initially; refer to Finding 3.2. In the
fixed version, this is done by computing buffer_len_is_negative = (1 - is_va
lid_calldata) * in_calldata_range so it is 1 when it is a calldata query while
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data_len < 4. Then, it overwrites buffer_len = (1 - buffer_len_is_negative)
* buffer_len so buffer_len = 0when buffer_len_is_negative is true.

• This computes the validity of the query by is_in_range = in_calldata_range *
is_valid_calldata + in_contract_data_range.

• This sets shift = shift * is_in_range, so on incorrect query, shift = 0.

• This extracts the 32-byte chunk from the buffer by extract_array_chunk_and_
constrain_trailing_zeros — this returns is_lt_len, which is a boolean repre-
senting if the shift is within the bounds.

• This sets is_in_range = is_in_range * is_lt_len so that if shift is out of
bounds, is_in_range is false.

• This packs the 32-byte chunk as a HiLo and returns it alongside is_in_range,
which becomes return_data.

• If return_data is true, it is a data query, so value is overwritten by the returned
HiLo by utilizing select_hi_lo.

Special case handling: calldata_hash

• Computes whether the query is for calldata_hash by checking field_or_calld
ata_idx equals 0x37.

• Computes tmp_data_len = data_len * return_calldata_hash so that it is data_
len if it is a calldata_hash query, but 0 otherwise.

• Keccak hashes the entire data with keccak_var_len, with tmp_data_len as the
buffer length. This avoids hashing in the case the calldata_hashwas not queried.

The witness value is overwritten by the computed hash if return_calldata_hash is
true by utilizing select_hi_lo.

Final validity check of the query

• Sets is_special_case to the sum of the indicators that the query is for: tx_typ
e, block_num, tx_index, function_selector, calldata_hash, data_length, or data.
These can be summed up as they are disjoint cases.

• Constrains that (is_idx_in_list |) is_special_case) =) 1.

Overall, the function handle_single_tx_subquery_phase0 returns
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PayloadTxSubquery {
tx_witness,
tx_root,
output: AssignedTxSubqueryResult {

subquery: AssignedTxSubquery { block_number, tx_idx,
field_or_calldata_idx },

value,
},

}

with the components constrained so that under the assumptions that

• the second phase constraints for tx_witness hold, and

• the transaction root used in the circuits is the correct transaction root corre-
sponding to the block_number,

it holds that the witness value is the correct query result represented as a HiLo in-
stance.

virtual_assign_phase0

• Calls handle_single_tx_subquery_phase0 for each subquery (of its input shard).

• Computes the output commit for the virtual table of key-value pairs ((block_nu
mber, tx_idx, field_or_calldata_idx), value), where these components are
those returned from handle_single_tx_subquery_phase0.

• Makes a promise call, for each subquery, to the block-header–subquery com-
ponent to obtain the transaction root for the block number block_number. It is
constrained that it is equal to the one used for handle_single_tx_subquery_phas
e0.

handle_single_tx_subquery_phase1

• Calls EthTransactionChip:)parse_transaction_proof_phase1 on the payload’s t
x_witness, thus verifying the remaining second-phase constraints.

virtual_assign_phase1

• Calls handle_single_tx_subquery_phase1 for each payload.
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4.7 Analysis of the receipt-subquery circuit

We summarize the constraints in the receipt-subquery circuit.

The circuit has its output commitment as well as a promise commitment for calls to
the header subquery as the public instances. The output commitment commits to a
virtual table of key-value pairs ((block_number, tx_idx, field_or_log_idx, topic_o
r_data_or_address_idx, event_schema), value). Here, block_number and tx_idx are
field elements representing a block number and transaction index, and field_or_log_
idx, topic_or_data_or_address_idx are the field elements representing the detailed
query about the log itself. The event_schema is a HiLo instance representing the event
schema in the EVM. Furthermore, value consists of two field elements that jointly en-
code 32 bytes of data as a HiLo.

The circuit aims to provide the answer for the logs for the tx_idx-th transaction at the
block number block_number. The detailed query is given with two field elements fiel
d_or_log_idx and topic_or_data_or_address_idx. The event_schema is checked to be
equal to the zeroth (in 0-index) topic bytes in the casewhere the query is indeed about
the logs. A promise call to the block-header subquery is used to fetch the receipt root
— and checks that this receipt root is used for the MPT-proof verification that a receipt
exists in the MPT.

Looking into src/components/subqueries/receipt/circuit.rs, we can summarize the
constraints introduced by each function as follows.

handle_single_receipt_subquery_phase0

We explain this function in multiple parts.

MPT proof verification and index handling

• Loads the receipt proof and MPT root and verifies it with the parse_receipt_pro
of_phase0 call.

• Constrains that the corresponding slot is not empty, so the receipt does exist.

• Constrains that field_or_log_idx < 232.

• Defines is_idx_in_list as field_or_log_idx < 4 = RECEIPT_NUM_FIELDS, then
computes field_idx = field_or_log_idx * is_idx_in_list, so that if the query
is actually a field query, then field_idx = field_or_log_idx, but if otherwise, f
ield_idx = 0.

• Similarly, defines is_log_idx as field_or_log_idx >) 100 = RECEIPT_LOG_IDX_O
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FFSET.

• Defines log_idx = (field_or_log_idx - 100) * is_log_idx, so that if the query
is actually a log query, then log_idx = field_or_log_idx - 100, but if otherwise,
log_idx = 0.

• Checks that log_idx < num_logs where num_logs is the log’s length. If this does
not hold, set is_log_idx = false and log_idx = 0. This is done by setting is_val
id_log_idx = (log_idx < num_logs), thenmultiplying is_valid_log_idx to both
is_log_idx and log_idx.

Field extraction via extract_truncated_field

Now the circuit moves on to fetching relevant data.

• The field_idx corresponds 0 to status, 1 to post state, 2 to cumulative gas, and
3 to log bloom.

• In the actual receipt list, index 0 is post state or status, index 1 is the cumulative
gas, and index 2 is the log bloom.

• To handle this difference, the circuit computes

– get_status as (field_idx =) 0),

– offset = 1 - get_status, and

– list_idx = field_idx - offset, with an indicator for list_idx.

• Using select_by_indicator, the first 32 bytes of the list_idx-th value are
fetched as field_bytes.

• Using select_by_indicator, the field_len of the list_idx-th value are fetched
as len.

• It sets len to the minimum of 32 and len.

• The field_bytes are constrained to be all zeros beyond index len.

• In the case of list_idx =) 0, the post-state and the status case is determined
based on the len. If len < 32, then it should be the status, and if otherwise, it
should be the post state. This is done by computing

– is_post_state_or_status = (list_idx =) 0),

– is_small = (len < 32),
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– diff = is_small - get_status, and

– constraining is_post_state_or_status * diff =) 0.

If list_idx =) 0, this forces (field_idx =) 0) =) (len < 32) as desired.

• Returns the field_bytes converted to VarLenBytesVec<F> as variable rc_field_
bytes.

Log-bloom extraction via handle_logs_bloom

This function is also in the block-header circuit.

• Checks whether the index is a query for the log bloom by checking if field_idx
is within [offset, offset+8); denote this as is_offset.

• Sets shift = (field_idx - offset) * is_offset, so that shift is zerp when the
query is not log bloom and shift is the correct shift if the query is for the log
bloom.

• Takes [shift * 32, shift * 32 + 32) of the logs_bloom_bytes via extract_arr
ay_chunk, packs it into HiLo, and returns it alongside is_offset; denote this as
logs_bloom_value and is_logs_bloom_idx.

Handling topic_or_data_or_address_idx

• Loads the topic_or_data_or_address_idx as tda_idx.

• Constrains tda_idx < 232.

• Checks whether this index corresponds to topic or data.

For topic,

• Sets is_topic = (tda_idx < 4) * is_log_idx so is_topic is true iff tda_idx < 4
and it is a log query.

• Sets topic_idx = tda_idx * is_topic so it is tda_idx if is_topic is true and 0
otherwise.

For data,

• Sets is_data_idx = (tda_idx >) 100) * is_log_idx so is_data_idx is true iff t
da_idx >) 100 and it is a log query.

Zellic 33 Axiom



• Sets data_idx = (tda_idx - 100) * is_data_idx so it is tda_idx - 100 if is_dat
a_idx is true and 0 otherwise.

Both is_topic and is_data_idx are modified later after fetching the topic and data
values — they are set to zero if the corresponding values are invalid.

Log parsing with extract_receipt_log and conditional_parse_log

In the version that fixes Finding 3.1, conditional_parse_log has been renamed condit
ional_parse_log_phase0.

• The witness extract_receipt_log is defined in EthReceiptChip.

• This uses an indicator corresponding to log_idx and selects the bytes and length
for the log_idx-th log using select_by_indicator.

• This log is parsed through conditional_parse_log along with the parsing flag i
s_log_idx, so the parsing is only done when is_log_idx is true.

• The log is replaced with a dummy log if is_log_idx is false — then the log is
parsed with the parse_log function.

• The parse_log function decomposes the RLP array with the RlpChip’s decompos
e_rlp_array_phase0 to get address, topics, data.

• The topics is once again RLP decomposed to get the topics_list.

Fetching topics, data, and address

• The data is fetched through extract_data_section:

– It calls extract_array_chunk_and_constrain_trailing_zeros.

– It returns 32 * data_idx < data_len as is_valid.

– This is_valid is multiplied at is_data_idx.

• The topic is fetched by select_array_by_indicator on topic_bytes with an in-
dicator based on topic_idx:

– It computes is_valid_topic = (topic_idx < num_topics).

– It sets is_topic = is_topic * is_valid_topic.

• The address is fetched from address.
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Event-schema constraints

• Sets no_constrain_event = (event_schema =) zero bytes).

• Sets event_diff = topic_bytes[0] - event_schema.

• Sets event_eq = (event_diff =) zero_bytes).

• Constrains that no_constrain_event |) (event_eq &) is_log_idx) is true.

So when event_schema is nonzero, event_schemamust be topic_bytes[0] and is_log_
idxmust be true.

Special case handling with indicators

• Checks if the query is tx_type, block_num, or tx_idx by checking if field_or_lo
g_idx is 0x32, 0x33, or 0x34.

• Checks if the query is address by checking if tda_idx = 0x32 and is_log_idx is
true.

• Checks if the query is sound by summing is_idx_in_list, is_tx_type, is_blo
ck_num, is_tx_idx, is_logs_bloom_idx, is_topic, is_addr, is_data_idx and
constraining it to be equal to 1.

• Gathers all the query answers for each cases, turns them into HiLo, and selects
thembased on the indicator. Here, the field element is additionally handledwith
prep_field.

• Turns the event_schema into bytes, range checks them, and then packs it into
HiLo.

Field element handling with prep_field

• This function exists to pad receipt field elements to 32 bytes appropriately.

• The constant array left_pad_indicator contains whether a field element should
be padded left or not.

• Selects whether to left pad by selecting from left_pad_indicator with select_
from_idx and denotes it as left_pad.

• Selects either the left-padded byte array or the original byte array based on
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left_pad.

• Packs the resulting byte array into HiLo.

Summary

Overall, the function handle_single_receipt_subquery_phase0 returns[2]

PayloadReceiptSubquery {
rc_witness,
rc_root,
output: AssignedReceiptSubqueryResult {

subquery: AssignedReceiptSubquery {
block_number,
tx_idx,
field_or_log_idx,
topic_or_data_or_address_idx: tda_idx,
event_schema,

},
value,

},
}

with the components constrained so that under the assumptions that

• all the second-phase constraints hold, and

• the receipt root used for the MPT proof verification is the correct receipt root
corresponding to the block number,

it holds that the value is the HiLo instance that corresponds to the desired query result.

virtual_assign_phase0

• Calls handle_single_receipt_subquery_phase0 for each subquery (of its input
shard).

• Computes the output commit for the virtual table of key-value pairs ((b
lock_number, tx_idx, field_or_log_idx, topic_or_data_or_address_idx,

2 In the version fixing Finding 3.1, log_witness, is returned as well.
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event_schema), value), where these components are those returned from
handle_single_receipt_subquery_phase0.

• Makes, for each subquery, a promise call to the block-header–subquery com-
ponent to obtain the receipt root at the block block_number.

handle_single_receipt_subquery_phase1

• Calls EthReceiptChip:)parse_receipt_proof_phase1 on the payload’s rc_witnes
s, thus verifying the remaining second-phase constraints with the exception of
those discussed in Finding 3.1[3].

virtual_assign_phase1

• Calls handle_single_receipt_subquery_phase1 for each payload.

3 In the fixed version, conditional_parse_log_phase1 is called as well, handling the previously missing
second-phase constraints.
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5 Audit Results

At the time of our audit, the audited code was not deployed to mainnet.

During our assessment on the scoped Axiom circuits, we discovered two findings. No
critical issues were found. One findingwas of high impact and onewas of low impact.
Axiom acknowledged all findings and implemented fixes.

5.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic and KALOS, of course, also cannot make guaran-
tees about any code added to the project after the audit version of our assessment.
Furthermore, because a single assessment can never be considered comprehensive,
we always recommend multiple independent assessments paired with a bug bounty
program.

For each finding, we provide a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic or KALOS.
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